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Abstract 

The Frisch-Hasslacher-Pomeau (FHP) model is a lattice gas cellular automaton designed to simulate fluid flows using the 

exact, purely Boolean arithmetic, without any round-off error. Here we investigate the problem of its efficient porting to 

clusters of Fermi-class graphic processing units. To this end two multi-GPU implementations were developed and examined: 

one using the NVIDIA CUDA and GPU Direct technologies explicitly and the other one using the CUDA implicitly through 

the OpenACC compiler directives and the MPICH2 MPI interface for communication. For a single Tesla C2090 GPU device 

both implementations yield up to a 7-fold acceleration over an algorithmically comparable, highly optimized multi-threaded 

implementation running on a server-class CPU. The weak scaling for the explicit multi-GPU CUDA implementation is 

almost linear for up to 8 devices (the maximum number of the devices used in the tests), which suggests that the FHP model 

can be successfully run on much larger clusters and is a prospective candidate for exascale computational fluid dynamics. 

The scaling for the OpenACC approach turns out less favorable due to compiler-related technical issues. We found that the 

multi-GPU approach can bring considerable benefits for this class of problems, and the GPU programming can be 

significantly simplified through the use of the OpenACC standard, without a significant loss of performance, providing that 

the compilers supporting OpenACC improve their handling of the communication between GPUs.  
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1. Introduction 

The Frisch-Hasslacher-Pomeau (FHP) model [1] is a lattice gas cellular automaton designed to simulate fluid 

flows using the exact, purely Boolean arithmetic, without any round-off error. An important advantage of this 

algorithm is that it is parallelizable both on the data and instruction level, and its execution time is limited only 

by the memory bandwidth. Although the first implementations of the FHP model, which dated back to 1980s, 

looked promising, it soon turned out that its real-world applications were very demanding both in terms of the 

hardware resources (memory) and the time to solution, two barriers that were very hard to pass by the machines 

available in the 1980s and 1990s [2]. This phenomenon is closely related to the Boolean nature of the algorithm: 

since one is actually interested in the values of physical parameters like pressure or velocity, which are 

continuous variables, one needs to average the Boolean parameters of the FHP model over either a relatively 

large numbers of neighboring nodes, which implies that the lattices used in simulations must be large. However, 

the performance of computers has grown by several orders of magnitude since then and so the hardware-based 

argument against the FHP model may have become invalid. Therefore in this paper we examine the problem of 

an efficient implementation of the FHP model on modern multi-GPU clusters, attempting to examine to what 

extend the lessons learned from the era of pure vector computers can be exploited in these new technologies. 

2. Model 

 

The FHP model of fluid flow is a cellular automaton in which particles forming the liquid are allowed to 

move only along the bonds of a triangular lattice [1, 4], hopping in discrete time steps Δt to one of the 6 

neighboring lattice nodes. The exclusion rule asserts that only one particle is allowed to move along a given 

bond in a given direction. The particles can meet at lattice nodes and collide, exchanging the momentum and 

changing their velocities. The evolution from time t to t + Δt takes part in two steps: propagation and scattering. 

In the propagation step each particle moves one node at a time in accordance to its current velocity. In the 

scattering step particles collide, changing their directions according to the rules imposed by the physical laws of 

mass and momentum conservation, see Fig. 1. If a particle hits an obstacle, it usually bounces back to mimic the 

no-slip boundary conditions typical of fluid flow simulations.  

 

 

There are several versions of the model, each characterized by distinct collision rules. Here we consider the so 

called FHP I model, in which each lattice node can be occupied by up to six particles, one per direction 

represented by internode links (bonds). The velocities of the particles shall be denoted by vi, i = 0,…6. 
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Figure 1 The FHP I and FHP II collision rules. The states before and after the collision are visualized in the first and second column, 

respectively. The first row shows FHP I collision rules, and the whole table presents the FHP II collision rules.  
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3. Data structures 

3.1. FHP with a look-up table 

A convenient representation of a node state is an 8-bit word, or byte, see Fig. 2.  

  

 

 

 

 

 

 

 

 

 

  For example, a bit pattern 00100100 corresponds to a node with two particles, one moving with velocity v2 

and the other with v5, located in the area occupied by the fluid. Subsequent nodes represented by 8-bit words are 

stored in array of length L times H where L and H are the length and height of the two-dimensional system. 

One way of implementing the propagation step is to use two two-dimensional arrays holding the system state 

immediately before and after translation of the particles. During this step, particles from the first array are 

propagated to the appropriate neighboring nodes in the second array, according to their velocities. 

Since the FHP is defined on a triangular lattice, we mapped its nodes into a rectangular lattice, see Fig. 3. This 

lattice was then mapped into a two-dimensional computer array.  

  

 

 

 

 

  As soon as all particles have been propagated, the arrays are swapped and the collision step is performed. 

Collision in each node is a local operation that does not involve neighboring nodes. It can be implemented using 

a look-up table, exploiting the fact that an 8-bit word can be regarded as an integer in the range of 0,…,255 

collisions with the boundaries are defined through the  same look-up table as used for inter-particle collisions 

[4]. We imposed reflecting (no-slip) boundary conditions on the top and bottom of the system and periodic 

boundary condition in the horizontal direction. Periodic boundary condition were implemented by extending the 

system by two columns, one on each side, each mirroring the column on the opposite edge of the system, see 

Fig. 4.  

 

 

 

 

 

 

 

 

 

Figure 2 The state of each node is represented by an 8-bit word. Bits 0-5 are 

mapped onto particles with given nonzero velocities, bit 6 corresponds to a 

particle at rest, and bit 7 controls whether the node is a boundary node. 

Figure 3 A triangular lattice (a) can be mapped onto a rectangular lattice by shifting every second row by 

half the lattice constant (b). 



 PRACE-1IP WP7:  Enabling Petascale Applications  

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  In each step the first column is copied to the additional column on the right side, and similarly the last one is  

occupied to the extra column on the left. 

To enforce fluid flow, an external constant force acting horizontally on the particles can be imposed. To this 

end, whenever the bits in a node fitted the pattern (..1..0..), where “.” denotes 0 or 1, with some probability P we 

exchanged the bits on positions 2 and 5 to form a pattern (..0..1..). This corresponds to reversing the velocity of 

some of particles moving horizontally against the external driving force and results in momentum transfer, 

which, in turn, is equivalent to the action of an external driving force [4]. 

 

3.2. FHP with a multispin coding technique 

While a look-up table appears to be a straightforward implementation of the collision step on scalar machines, 

vector computers exhibit a better performance if the multispin coding technique was chosen for the data 

structures [5]. In this approach particle velocities at each lattice node can be represented by single bits and stored 

in independent arrays Xi, i = 1,…,6. Each array stores information about the presence (bit set to 1) or absence 

(bit set to 0) of particle in a particular direction. To avoid conditional statements needed to distinguish the 

neighborhood of even and odd lattice rows (cf. Fig 3), the lattice is mapped into a parallelogram rather than into 

a rectangle, cf.  Fig 5.  

 

 

 

For effective scattering, instruction-level and data-level parallelism of the FHP model can be exploited. Such 

an approach involves dividing the data into separate bits and distributing them appropriately in computer words. 

Then it is possible, through logical and arithmetic bitwise operations, to execute more than one operation per 

processor clock. For the propagation step to be performed efficiently, a special ordering of bits representing 

particles in lattice nodes in arrays iX  must be applied. The first BN/  nodes are assigned in first bits of 

subsequent words, next BN/  nodes are assigned to the second bits of consecutive words, and so on B  times, 

where B  is the maximum computer word length. Most often B  equals 64, being the length of the long long 

integer type. The aim of such a data distribution is to perform the particle movement through a simple 

assignment of words. This is a significant improvement over the look-up table method, in which the propagation 

step involves detecting the values of individual bits and propagating them—as individual bits—to the 

neighboring lattice nodes. 

Figure 4 A schematic of periodic boundary conditions. Each edge column is 

mirrored in an extra column added on the other side of the grid. 

Figure 5 A triangular lattice (a) mapped onto parallelogram (b). 
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Besides the six velocity arrays, one still needs an array holding the placement of obstacles and an array of 

random bits used in the scattering step to mimic the stochastic choice of the scattering pattern for the cases where 

a given collision can result in two collisions with probability 1/2, cf.Fig 1. 

 

4. Implementations 

We developed and examined three implementations of the FHP I model: a reference CPU implementation, a 

CUDA[6] implementation and an OpenACC-based[7] implementation. They all use the multispin coding 

technique. 

 

4.1. Reference CPU implementation 

Our CPU C++ implementation of the FHP algorithm is shown in Listings 1, 2, and 3. Arrays x1, x2, x3, x4, x5, 

x6 of 64-bit-long type unsigned long long int and size ivb = Width*Height/B store the bits representing the states 

of the particles in a particular lattice node. Arrays ob and nob indicate whether a given lattice node is occupied 

by an obstacle; any of them can be obtained from the other by the bitwise negation. The collision step, see 

Listing 1, is implemented as a loop over all words. The collision rules (Fig. 1) are implemented through Boolean 

operations reflecting the Boolean formulation of the FHP microdynamics. Variable ncol stores the information 

on the particles not undergoing collisions. Variables cang and caang help determine the result of non-

deterministic collisions in a way that conserves the angular momentum. Array ang holds the information on the 

direction of rotation of non-deterministic FHP collisions for each lattice node; after each collision its value at a 

given node is negated so that on average the number of clockwise and counter-clockwise rotations is the same 

both globally and locally. Since the collisions tend to occur stochastically, this deterministic algorithm mimics 

the generation of random numbers. Macro NEXTY implements the collision rules, taking advantage of the 60-

degree rotational symmetry of the system. Finally, arrays y1, y2, y3, y4, y5, y6 hold the system state after all 

collisions have been completed. 

The propagation step involves simple assignments form arrays xi to yi. It consists of two independent loops to 

account for the boundary conditions. 

The implementation of periodic boundary conditions in the horizontal direction (Listing 3) requires the use of 

the circular bit shift operation. To this end we used a software implementation, as shown in Listing 4. To 

exchange particles between the two vertical system boundaries, the words representing the system state at the 

boundaries are circular-shifted one bit in an appropriate direction and assigned to the words representing the 

other boundary. 

 

 

4.2. Nvidia CUDA implementation 

CUDA is a minimal extension to the standard C++ language that enables to run and synchronize thousands of 

GPU threads in parallel. In this programming model, a GPU device is a coprocessor running kernels 

asynchronously with the host CPU. The main task of the CPU is to transfer data to the GPU, launch GPU 

computational kernels in a given order, and read the results from the GPU. 

In the CUDA implementation of the FHP model the CPU subroutines shown in Listings 1, 2, and 3. were 

reimplemented as CUDA computing kernels. In the collision kernel the shared memory was used to optimize the 

multiple memory reads of arrays xi, ob and nob. In the remaining kernels the use of the shared memory wouldn’t 

be as profitable, as they use only simple memory assignments. 

The multi-GPU communication was realized through the Cuda Streams and Unified Virtual Addressing 

(UVA) technologies. By using Cuda Streams one can distribute and asynchronously execute multiple computing 

kernels working on separate workloads. Before the simulation begins, the system is divided into N parts where 

N  is the number of GPUs, with the first H/N rows assigned to the first GPU, the next H/B rows to second GPU 

and so on. The communication is provided by the cudaMemcpyPeerAsync function which, using the UVA, can 

directly copy data between different devices bypassing the CPU. 
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4.3. OpenACC implementation 

OpenACC is a pragma-based programming standard similar to the well known OpenMP. It aims to extend 

OpenMP so as to generate parallel code for various compute accelerators and is currently supported by three 

compilers, of which the Portland Group compiler, pgi, was chosen for the tests. 

We used OpenACC to quickly generate NVIDIA CUDA C code, an alternative to developing the CUDA code 

manually, as described above. OpenACC provides of a set of compiler directives and runtime library routines. 

The FHP algorithm is well suited for automatic parallelization, so it was enough to take the CPU code and put 

the #pragma acc parallel loop compiler directive in front of each for loop, see Listing 5. To reduce redundant 

PCI-E transfers, the data should be copied to the accelerator once, before the usage of the #pragma acc data 

copy directive, which automatically copies data back to the host at the end of the scope, see Listing 5. Functions, 

like those presented in Listing 4, have to be rewritten either as preprocessor directives or as inline functions 

before to be executed on the device. 

A standard approach to the multi-GPU programming requires is based on the MPI standard. A the time we 

developed the OpenACC code, the Portland Group OpenACC compiler did not support any of the GPU-aware 

MPI implementations, so the standard MPICH2 implementation of the MPI was chosen. Since it is unaware of 

the UVA, the communication between different GPUs requires the first and last row of the arrays x1 and x4 to be 

sent to the next GPU, and x1, x6 to be send to the previous one, via the host. Data updates from the host to the 

device and vice versa were implemented by #pragma acc update host( array[0:size] ) and #pragma acc update 

device( array[0:size] ). Unfortunately, OpenACC does not support partial updates of the data, thus extra arrays 

have to be used for interprocess communication, which involves an additional overhead. 

 

5. Results 

Using a single high-end consumer-class GPU accelerator, we achieved the performance of   40 Gups (Giga 

lattice uploads per second), see Table 1. Using professional HPC computing nodes with eight Nvidia M2090 

units we could go up to 220 Gups. These results are much higher than 2 Gups reported [2] for Cray-YMP, the 

state of the art vector supercomputer from early 1990s . 

The results for the weak and strong scaling for up to 8 GPUs are shown in Figs. 6 and 7, respectively. The 

weak scaling is almost linear for both CUDA-based implementations, indicating that OpenACC is a very good 

alternative to writing CUDA kernels manually. It also suggests that the FHP model can be successfully run on 

much larger clusters and is a prospective candidate for exascale computational fluid dynamics. The strong 

scaling is less favorable, especially for OpenACC. This reflects a relatively high latency and communication 

overhead if the workloads per GPU device are getting smaller relative to the communication. 

Comparing power consumption of Cray-YMP, which was about 200 kW, to modern 8-GPU nodes, which 

consume less than 4 kW, we can conclude that the power consumption per 1 Gups has decreased by four orders 

of magnitude. 

Table 1  The performance of our implementations on various CUDA-capable devices, in GUPS (lattice node updates per second[5,8]). 

Implementation   GTX480 [GUPS]  M2090 [GUPS]  K20M [GUPS] 

OpenACC   36.8   30.1  N/A  

CUDA   41.1  32.3  57.0 
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The choice between technologies depends on both the expected performance and the programming costs. On  

the one hand NVIDIA CUDA gives us the full control over the program and, assuming a programmer’s deep 

understanding of the underlying accelerator architecture, should outperform automatic the tools. On the other, 

the results show that by using a handful of compiler pragmas we can port a program from the CPU to the GPU in 

just a few minutes, without a significant performance loss. 

The Portland Group OpenACC implementation is still under development. As soon as it can support a 

CUDA-aware MPI implementation, the development of efficient Multi-GPU applications will be much easier, 

cheaper and popular. It is likely that manual CUDA programming will be used only in the most crucial parts of 

the code where every millisecond matters. 

 

 

Figure 7 The strong scaling on a node with 8 NVIDIA M2090 cards. 

Figure 6 The strong scaling on a node with 8 NVIDIA M2090 cards. 

Figure 7 The weak scaling on a node with 8 NVIDIA M2090 cards. 
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6. Listings 

#define TYPE unsigned long long int 

#define NEXTY(cw,ccw,same,oop)\ 

    ((( cw )  & ( cang ))+(( ccw ) & ( caang ))+\ 

    (( same ) & ( ncol ))+(( oop ) & ( ob[i] ))) 

TYPE col,ncol,cang,caang; 

for(i=0; i<ivb; i++) 

{ 

  ncol =(\ 

        (x1[i]^x4[i])|(x2[i]^x5[i])|\ 

        (x3[i]^x6[i])\ 

        )&\(\ 

        (x1[i]^x3[i])|(x3[i]^x5[i])|\ 

        (x2[i]^x4[i])|(x4[i]^x6[i])\ 

        )&(nob[i]); 

 

  col     = (~ncol) & ( nob[i]); 

  cang    = (  col) & ( ang[i]); 

  caang   = (  col) & (~ang[i]); 

  ang[i]  = (  col) ^ ( ang[i]); 

 

  y1[i] = NEXTY(x2[i],x6[i],x1[i],x4[i]); 

  y2[i] = NEXTY(x3[i],x1[i],x2[i],x5[i]); 

  y3[i] = NEXTY(x4[i],x2[i],x3[i],x6[i]); 

  y4[i] = NEXTY(x5[i],x3[i],x4[i],x1[i]); 

  y5[i] = NEXTY(x6[i],x4[i],x5[i],x2[i]); 

  y6[i] = NEXTY(x1[i],x5[i],x6[i],x3[i]); 

} 

Listing 1 Collision step. 

 

 

 
for(i = ldb; i < ivb - ldb; i++) 

{ 

  x1[i] = y1[ i + ldb - 1 ]; 

  x6[i] = y6[ i + ldb     ]; 

  x3[i] = y3[ i - ldb     ]; 

  x4[i] = y4[ i - ldb + 1 ]; 

  x2[i] = y2[ i - 1       ]; 

  x5[i] = y5[ i + 1       ]; 

} 

 

for(i=0;i<ldb;i++) 

{ 

  x1[i]         = y1[i+ldb-1      ]; 

  x6[i]         = y6[i+ldb        ]; 

  x3[i+ivb-ldb] = y3[i+ivb-2*ldb  ]; 

  x4[i+ivb-ldb] = y4[i+ivb-2*ldb+1]; 

} 

Listing 2 Propagation step. 
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for(i = 0; i < (ivb - ldb)/ldb; i++) 

{ 

  x1[i*ldb]         = rotl(y1[i*ldb+2*ldb-1], 1L  ); 

  x2[i*ldb]         = rotl(y2[i*ldb+ldb - 1], 1L  ); 

  x4[i*ldb+2*ldb-1] = rotl(y4[i*ldb        ], 63L ); 

  x5[i*ldb+2*ldb-1] = rotl(y5[i*ldb+ldb    ], 63L ); 

} 

Listing 3 Periodic boundary condition. 

 

 
inline TYPE _rotl(TYPE value, TYPE shift) 

{ 

    return (value << shift) | \ 

           (value >> (sizeof(TYPE)*8 - shift)); 

} 

Listing 4 Circular shift. 

 

 

 

//copy arrays to the device 

#pragma acc data copy( x1[0:ivb],x2[0:ivb],... ) 

{ 

  //collision step loop 

 

  #pragma acc parallel loop 

  for(i = ldb; i < ivb - ldb; i++) 

  { 

    x1[i] = y1[ i + ldb - 1 ]; 

    x6[i] = y6[ i + ldb     ]; 

    x3[i] = y3[ i - ldb     ]; 

    x4[i] = y4[ i - ldb + 1 ]; 

    x2[i] = y2[ i - 1       ]; 

    x5[i] = y5[ i + 1       ]; 

  } 

 

//further operations as on previous listings 

 

}//end of the scope, data is copied back to host 

Listing 5 OpenACC example code. 
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